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ABSTRACT 
Privacy is an important challenge facing the growth of the 
Web and the propagation of various transaction models 
supported by it. Decentralized distributed models of 
computing are used to mitigate privacy breaches by 
eliminating a single point of failure. However, end-users 
can still be attacked in order to discover their private 
information. This work proposes using distributed 
hierarchical neighborhood formation in the CF algorithm to 
reduce this privacy hazard. It enables accurate CF 
recommendations, while allowing an attacker to learn at 
most the cumulative statistics of a large set of users. Our 
approach is evaluated on a number of widely-used CF 
datasets. Experimental results demonstrate that relatively 
large parts of the user profile can be obfuscated while a 
reasonable accuracy of the generated recommendations is 
still retained. Furthermore, only a small subset of users may 
be required for generating accurate recommendations, 
suggesting that the proposed approach is scalable.  
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INTRODUCTION 
Privacy is an important challenge facing the growth of the 
Internet and the acceptance by users of various transaction 
models which it supports. Personalized information 
delivery in general, and products recommendation in 
particular nowadays play a major role in the development 
of the Web [15]. Such methods can increase the likelihood 
of a customer making a purchase, compared to non-
personalized approaches. However, Web users leave 
identifiable tracks while surfing the Web, and there is a 
growing awareness of and concern about the misuse of such 
information [1]. Many eavesdroppers on the Web violate 
user privacy for their own commercial benefits, and as a 

result, users concerned about their privacy refrain from 
using Web applications, just to prevent possible exposure 
[6]. According to a recent survey [4], most users will not 
agree to openly sharing their private information. However, 
people are not equally protective of every attribute in their 
data records [17, 4]. A user may not divulge the values of 
certain attributes at all, may not mind giving true values for 
others, or may be willing to share private information by 
giving modified values of certain attributes.  

Privacy hazards for personalization system are aggravated 
by the fact that effective personalization requires large 
amounts of personal data. For example, collaborative 
filtering (CF), commonly used in the E-Commerce 
recommender systems [15], is based on the assumption that 
people with similar tastes expressed in the past will prefer 
similar items in the future. Here, a user’s preferences are 
modeled as a vector containing his or her opinions on a set 
of items, expressed by explicit ratings provided by the user 
on these items. In order to generate a recommendation, CF 
initially creates a neighborhood of users with the highest 
similarity to the user whose preferences are to be predicted 
(based on the similarity/correlation of their rating vector 
representations). Then, it generates a recommendation by 
averaging the ratings of the users in the neighborhood for 
the given item [16]. Clearly, the accuracy of the 
recommendations thus generated is correlated with the 
number of similar users and the degree of their similarity. 
The more detailed are the user profiles and the larger their 
cumulative number, the more reliable will be the 
recommendations. Hence, there is a clear trade-off between 
the accuracy of the provided personalization and the 
privacy of user data. As more personal data is revealed, 
better and more accurate recommendations are generated.  

In real life scenarios, the ever growing amount of data 
about users and products (or items) may be naturally 
distributed among many data repositories. A single data 
repository may be focused around only a limited variety of 
topics or domains (e.g., movies or books). Hence, users 



 

looking for accurate personalized information, possibly of 
various kinds, may well need to interact with a different set 
users and systems every time. Doing so can ensure that 
sufficient information relevant to the user’s query is 
collected and that the recommendations produced are 
accurate. Distributed infrastructures can facilitate the 
development of such personalized environments. These can 
also be useful to mitigate some privacy breaches by 
eliminating a single point of failure. However, insecure 
end-user communication in distributed environments can be 
attacked and private information may still be exposed.  

Hence, in order to provide a stable dynamic infrastructure 
while preserving the users’  privacy, a previous study [2] 
suggested perturbing parts of the user's profiles [11] while 
using a decentralized distributed infrastructure [3]. This 
setting allows users to store their personal profile locally 
and leaves them in control as to what personal information 
they would like to reveal, and when. Thus, a user (hereafter 
referred to as the active user) requesting, for instance, 
similar user profiles for generating a CF recommendation, 
would receive only modified user profiles. From these 
profiles the active user can learn only a limited amount of 
information about the true ratings of individual users. Then, 
the active user aggregates ratings of most similar users to 
generate the recommendations locally. Experimental results 
indicated that this method does not lower considerably the 
obtained accuracy of the generated recommendations.  

This work extends [2] by providing new both 
methodological and experimental contributions. First, we 
propose exploiting the notion of hierarchical topology (for 
example, see [18]). In this setting, peers are organized into 
peer-groups managed by super-peers. The super-peers 
encapsulate computations made by the underlying peers and 
then aggregate their results before sending them to the 
active user. Similarly, the active user aggregates the 
responses of the super-peers and generates a 
recommendation. In this scenario, attacking one of the 
super-peers does not yield any meaningful information 
about any individual user. An attacker may not learn the 
ratings of a single user, but only the average preferences of 
a large group of users (managed by the given super-peer) 
[12, 9]. To increase privacy, each super-peer chooses only a 
random subset of its peers to form the neighborhood of 
similar users. Within the peer-groups, privacy can be 
additionally preserved by using the previously introduced 
obfuscation methods [2] and through querying only a subset 
of peers. Thus, our approach preserves users' privacy by 
leaving them in control of their personal information, while 
allowing them to support recommendation generations 
initiated by other users.  

Previous work has examined the issue of obfuscating user 
profiles only on a dense dataset (e.g., a subset of Jester’s 
user base), where the intended meaning of the term “dense” 
is that a large percentage of all the possible user product 
ratings are available. In this paper we evaluate the 
obfuscation approach and the scalability of the proposed 

hierarchical extension using three publicly available 
datasets: Jester[5], MovieLens [7], and EachMovie [14]. 
Thus, we experimented with both dense (Jester) and very 
sparse datasets (MovieLens and EachMovie). In the latter 
only a small fraction of all possible ratings are known. 
Results for all datasets demonstrate that a relatively large 
part of the user profile can be obfuscated, and only a small 
subset of users is required to generate a recommendation 
without hampering the accuracy of the CF. Hence, adding 
the proposed privacy enhancements does not severely affect 
the accuracy of the CF recommendation algorithm, and it is 
scalable by the number of peers. 

The rest of the paper is structured as follows: Section 2 
presents the distributed hierarchical CF approach and 
discusses the obfuscation policies. Section 3 presents the 
experimental results validating the approach and discusses 
the empirical evidence. Section 4 concludes the work, and 
presents directions for future research. 

DISTRIBUTED RECOMMENDATION GENERATION 
Users looking for personalized information in various 
domains and situations may need to interact with sets of 
other users. During this process, they reveal their own 
profile and request recommendations from other users (or 
service providers). To provide personalization, while 
preserving user privacy, [2] suggests using a distributed 
infrastructure and obfuscating parts of the user profiles 
before sending them over the underlying communication 
middleware. Obfuscation reduces the amount of a user’s 
information exposed to other users.  It shows that it is 
possible to obfuscate relatively large portions of a user’s 
profile, and still generate accurate recommendations. This 
observation is true for both the information requester and 
the responding users. Practically, this means that users may 
protect their privacy simply by revealing small portions of 
their profile when requesting personalization or providing 
recommendations to other users.  

This approach enhances the privacy of the responding 
users. However, it still allows the responding users' profiles 
to be revealed through a systematic attack using multiple 
requests. In order to prevent this scenario, we propose the 
notion of peer groups and super-peers, where each group 
contains a dynamic number of users. When a request for a 
recommendation is received, one of the users (negotiated 
within the group every time) is elected as a “super-peer” 
and becomes a communication mediator between the 
requester of the information and the users in the underlying 
peer group. In this way each super-peer logically 
encapsulates the data of the underlying peers. Within peer-
groups, privacy could be additionally enhanced using the 
obfuscation methods and querying a random subset of 
peers. 

Consider the following example illustrating the above ideas. 
A recommender system keeps track of three peer groups. 
Upon receiving a request from an active user, the system 
forwards it to the peer groups. Within each peer group, an 
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ad-hoc selected super-peer handles the request. It selects a 
subset of the peers in the group and forwards the request 
only to them. Upon receiving the responses from the 
selected peers, each super-peer builds a local 
recommendation, and forwards it to the active user jointly 
with the number of users in the cluster and the average 
similarity of the K nearest neighbors in the local 
neighborhood. Upon collecting the results from all the 
super-peers, the active user generates a global 
recommendation by aggregating three obtained local 
recommendations. The above process is schematically 
depicted in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Hierarchical Decentralized Storage of User Profiles 

Data Obfuscation Policies 
The general approach of this work suggests that an active 
user will aggregate local recommendations generated by 
different super-peers into a single global recommendation. 
The process of generating the local recommendations 
within each peer-group still poses privacy concerns similar 
to the original one. These, however, are now on a smaller 
scale as local peer groups may contain only a limited 
number of peers. Hence, the recommendation process 
generates potentially less insecure communication.  
Nevertheless, to mitigate these concerns further, other 
privacy enhancing methods can be used within each peer 
group. One of these is the use of the data obfuscation 
policies proposed in [2]. In what follows, we provide a brief 
description of this method and motivations for using it.  

Studies suggest that people are not equally protective of 
various elements of their private details. Hence, if users are 
in control of which of their private details are released, they 
can actively decide to release only some of them, and avoid 
divulging those values that they consider to be very private. 
Moreover, users might be willing to share modified values 
of certain fields of their profile because they want not to 
reveal their true preferences completely. Consider for 
instance profile information such as the list of books bought 

by a user. In this case the user may be concerned about 
revealing information about books related to their political 
ideas or health status. Conversely, users might readily share 
knowledge about books related to their scientific interests. 
This motivates the use of data obfuscation policies to 
mitigate privacy concerns. These policies change the user's 
profile before its similarity with the active user is 
calculated, effectively hiding some parts of the original 
user's profile. We denote three generic policies for 
modifying the contents of user profiles: 

• Uniform Random obfuscation – real ratings in the 
user profile are substituted by random values chosen 
uniformly in the range of possible ratings in the 
dataset. 

• Bell Curved Random obfuscation – real ratings in 
the user profile are substituted by random values 
chosen using a bell-curve distribution with 
properties similar to the statistical properties of the 
data in the dataset (e.g., average and standard 
deviation of the ratings).  

• Default obfuscation(x) – real ratings values in the 
profile are substituted by a predefined constant 
value x.  

 
For the Default obfuscation policy we use either values that 
represent extreme rating values or values that are close to 
the average rating of the dataset. Using extreme values in 
the obfuscation policy, as we shall show later, has a strong 
negative effect on recommendation accuracy, as it 
substitutes the true value, that should be close to the 
average, with one that is very different from the average. 
Moreover, this approach is very unlikely to be adopted by a 
user who wants to protect his privacy, since these extreme 
ratings will clearly show some precise polarized user 
preference. The Bell Curved Random policy reflects the 
actual distribution of the data and is supposed to provide the 
best accuracy, while preserving user privacy, since it is 
going to reveal a user with average preferences. Similarly, 
the Uniform policy will produce ratings that are not too far 
from the average behavior of the user. Hence this method is 
supposed to provide reasonably good privacy protection as 
well as recommendation accuracy. In the next section we 
examine the impact of these policies on the accuracy of the 
generated recommendations, using several known datasets 
having different statistical characteristics. 

EXPERIMENTAL RESULTS 
In order to evaluate the proposed approach, we simulated a 
distributed environment using a multi-threaded Java 
implementation, where any user can initiate a 
recommendation request. As described earlier, each request 
is transferred to a set of super-peers. The number of super-
peers in the system is static, whereas the peers are seeded 
randomly between the super-peers. Based on a predefined 
parameter, each super-peer selects a random subset of the 
underlying peers to be queried. After receiving a request, 
each super-peer finds K-nearest neighbors by computing the  
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dataset users items lower upper total rats avRated density average stddev MAE-NP 
Jester 48483 100 -10 10 3519449 72,5914 0,725914 0,816762 4,40028 0,220014 

MovieLens 6040 3952 1 5 1000209 165,5975 0,041902 3,580477 0,934619 0,233655 
EachMovie 74424 1649 0 1 2811718 37,77972 0,022911 0,607307 0,223402 0,223402 

Table 1. Datasets properties 

 

dataset neutral random Negative positive average rating variance 
Jester 0 Random(-10,10) -10 10 0,816762 4,40028 

MovieLens 3 Random(1,5) 1 5 3,580477 0,934619 
EachMovie 0.5 Random(0,1) 0 1 0,607307 0,223402 

Table 2. Datasets properties 

 

similarity between its underlying peers and the active user. 
Similarity computation (using the commonly used Mean 
Square Difference metric) is done locally by the peers, on 
possibly obfuscated profiles. Each super-peer returns to the 
active user an aggregated local rating on the relevant item 
jointly with the aggregated similarity of the peers in the 
neighborhood. Upon receiving the responses from the 
super-peers, the active user generates a global 
recommendation as a weighted aggregation of the super-
peers’  local recommendations. To measure the accuracy of 
the recommendation, we computed the Mean Average Error 
(MAE) [8] by: 
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where N denotes the total number of the generated 
recommendations, pi is the ith recommendation, and ri is the 
real ith rating. To compare the MAE values across different 
datasets, we normalized the MAE by dividing it by the 
range of possible ratings in the respective dataset. 

In order to provide solid empirical evidence, we used three 
well-known datasets: Jester [5], MovieLens [14] and 
EachMovie [7]. Previous work [2] examined the issue of 
obfuscating user profiles on a dense matrix of users taken 
from the Jester dataset. In this work, we expand the 
experiments to include both dense and sparse datasets.  
Table 1 summarizes the different statistical properties of the 
datasets: number of users in the dataset, range of ratings, 
total number of ratings, average number of items rated by a 
user, density of the data (i.e., relative percentage of the 
rated items in the matrix), and statistical data about the 
ratings: average and standard deviation. We compared our 
MAE results to the MAE of a non-personalized 
recommendation algorithm that serves as a baseline 
measure. Non-personalized recommendation is computed as 
the average rating of the given item in the overall user 
population. Thus, the non-personalized MAE is computed 
by assigning to the predicted value pi the constant average 
rating. The non-personalized MAE values were normalized 

by dividing them by the range of possible ratings in the 
respective dataset. 

We performed two types of experiments. The first 
experiment examines the effect of data obfuscation and the 
second examines the effect of querying a subset of peers in 
the peer-group on the accuracy of the generated 
recommendations. For this, we used five different methods 
for modifying the data in user profiles, which were 
instantiated by the above mentioned generic obfuscation 
policies.  

• Positive - substitutes the real rating with the highest 
positive rating in the dataset (+10 for Jester, 5 for 
MovieLens and 1 for EachMovie) 

• Negative - substitutes the real rating with lowest 
negative rating in the dataset (-10 for Jester, 1 for 
MovieLens and 0 for EachMovie) 

• Neutral - substitutes the real rating with neutral 
rating, i.e., an average between the maximal and 
minimal possible ratings in the dataset (0 for Jester , 
3 for MovieLens, and 0.5 for EachMovie) 

• Random - substitutes the real rating with a random 
rating in the range of ratings in the respective 
dataset (between -10 to 10 for Jester, between 1 to 5 
for MovieLens and between 0 to 1 for EachMovie)  

• Distribution - substitutes the real rating with a rating 
reflecting the real distribution of ratings in the 
dataset (in terms of average and variance). 

 
The parameters of the above obfuscation methods are 
summarized in Table 2. 

In the first experiment we did not employ the introduced 
hierarchical topology for the neighborhood formation. 
Thus, all the underlying peers in the group responded to a 
query returning an obfuscated version of their user profile. 
This was done to allow the general behavior of different 
obfuscation policies to be examined using several datasets 
having different statistical characteristics (as detailed in 
Table 1). Hence, in this experiment we measured the effect 
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of gradually replacing increasing elements of user profiles 
with either a predefined value or randomly chosen value of 
a given distribution. For each dataset we gradually 
increased the percentage of user profile that was modified 
(hereafter referred to as the obfuscation rate) from 0.0 (the 
original profile is unchanged) to 0.9 (90% of the ratings in a 
profile of each user are modified). We produced a fixed set 
of 10,000 users-items ratings to be recommended, and for 
each possible obfuscation rate we measured the MAE for 
the whole set. Figures 2, 3 and 4 show MAE values as a 
function of the obfuscation rate. They refer to the Jester, 
MovieLens and the EachMovie datasets, respectively. 
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Figure 2. MAE in Jester Dataset 
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         Figure 3. MAE in MovieLens Dataset 
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Figure 4. MAE in EachMovie Dataset 

The graphs show that the effect of Random, Neutral, and 
Distribution obfuscation policies is quite similar. 
Obfuscating parts of the dataset according to the above 
policies has a minor impact on the MAE of the generated 
recommendations. The MAE rate slightly increases in a 
roughly linear manner with the obfuscation rate; however, 
the change is minor (in the range of 5% to 7%, for different 
datasets), and the recommendations are still accurate. This 
can be explained by the fact that in Neutral, Distribution, 
and Random policies, the modified values are close to the 
real distribution of the ratings in the dataset and the 
obfuscation does not significantly modify the ratings 
vectors of the users. Thus, substituting the actual ratings 
with similar ratings creates only a small overall impact on 
the MAE computed over many recommendations.  

Conversely, in Positive and Negative obfuscation policies, 
the actual ratings are substituted by highly dissimilar 
values, as they are far from the average values in the 
dataset. Thus, replacing the real ratings with extremely 
positive or negative ratings does modify the ratings vector 
of the users. As a result, the generated recommendations are 
inaccurate and the MAE rate increases roughly linearly (in 
the range of 27% to 33%, for different datasets) with the 
obfuscation rate. The slope of the increase is significantly 
higher than in Random, Neutral and Distribution 
obfuscation policies. As can be clearly seen, this 
observation is true for all three datasets that were used in 
the experiment. 

The second experiment was designed to evaluate the impact 
of changing the number of peers involved in the 
neighborhood formation within an individual peer-group 
(one super-peer) on the accuracy of the global 
recommendations. This also has implications on the 
scalability of our approach, as it correlates with the total 
number of peers involved in the recommendation 
generation process. Since we do not have an a-priori known 
topology for the super-peers, we decided to simulate a 
general case by arbitrarily assigning each user (peer) to a 



 

single super-peer. When a super-peer is queried, it decides 
(using a predefined parameter) which subset of the 
underlying users should answer the query. For each dataset, 
we gradually increased the percentage of peers that were 
queried by the super-peers within the peer-groups (hereafter 
referred to as keep rate) from 10% to 100% of the peers. 
We produced a fixed set of 10,000 users-items ratings to be 
recommended, and for each possible obfuscation rate we 
measured the MAE for the whole set. To allow the behavior 
of choosing a subset of the peers to be examined, no 
obfuscation policy was used while querying the peers 
within a peer-group.  

Figure 5 presents the MAE results as a function of the keep 
rate for Jester, MovieLens and the EachMovie datasets. Is 
illustrates that the MAE for all three datasets is close to the 
original value for a relatively low percentage of the queried 
users. For example, in Jester the MAE curve is close to the 
original MAE when only 30% of the peers are queried, and 
in very sparse MovieLens and EachMovie datasets it occurs 
at approximately 40% and 50%, respectively. Thus, it 
demonstrates that the number of users that should actually 
be queried is relatively low, and allows us to conclude that 
the hierarchical setting offers good scalability with the 
number of peers. 

Figure 6 illustrates the decrease in the MAE compared to an 
MAE calculated when using 100% of the peers. It is 
computed from the results of Figure 5 by subtracting the 
calculated MAE from the MAE calculated by keeping 
100% of the peers. It illustrates more clearly that the MAE 
converges very fast to the MAE that can be obtained using 
all the user profiles. It also illustrates that for Jester this 
convergence is quicker than for MovieLens, and the latter 
converges is faster than EachMovie. 

Analysis 

The results of these experiments show that the obfuscated 
recommendation results are quite similar for different 
datasets with different levels of density. For instance, the 
effect of the random policy is an increase of the MAE from 
the value that can be obtained with no obfuscation to a 
value close to the MAE of non-personalized 
recommendations. This seems in contrast with a common 
belief that the accuracy of the CF recommendations is 
strongly correlated to the sparseness of the dataset. 
Following this, we conjecture that obfuscating data in a 
sparse dataset would have lead to very unreliable data for 
recommendations generation, as the amount of initial data 
was already limited.  Conversely, dense datasets were not 
expected to be impacted that strongly, as recommendations 
are still based on a relatively large amount of reliable data 
(even after performing the obfuscation). 

In our experiments we used the Jester dataset, which is 
relatively dense (72.59%), and both MovieLens and 
EachMovie datasets, which are very sparse (density of 
4.19% and 2.29%, respectively). Figures 2, 3 and 4 show 
that the behavior of the MAE as a function of obfuscation 

rate for all these datasets is similar (and also similar to the 
dense subset of Jester used in [2]). Figures 5 and 6 show 
that the behavior of the MAE as a function of the number of 
peers chosen for all these datasets is roughly similar, where 
the sparse datasets needs only about 10-20% more peers to 
converge to the best attainable MAE. This empirical 
evidence suggests that the intuitive assumption described is 
incorrect. We consider this to be an important observation, 
since the issue of not having enough ratings to create 
reliable recommendations (referred to in the literature as 
data sparseness) is a well-known research issue in 
Collaborative Filtering recommender systems [13]. 
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          Figure 5. MAE vs. keep rate 
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We hypothesize that our observations could be explained by 
a high value of cross-users data redundancy within the 
datasets. This means that the users of each of the above 
datasets could be roughly partitioned into a small set of 
classes, such that the number of similar users in each class 
is relatively high. Hence, the ratings of different users 
within each class are highly correlated, and only a small 
number of representative ratings for each class is needed to 
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generate accurate recommendations. Data obtained by 
selecting additional users from a class is repetitive and 
therefore redundant. In this case, obfuscating even large 
parts of the ratings has a minor effect on the accuracy of the 
recommendations, since the remaining users and ratings in 
the class still provide a stable basis for building accurate 
recommendations.  

Our analysis is supported by the second experiment's 
results, where we evaluated the effect of querying a subset 
of users in each peer-group in the process of 
recommendation generation. Our results show that it is 
similar for all three datasets and that a relatively small 
number of users is needed in order to create a reliable 
recommendation (30%-40% in our experiments). This was 
observed regardless of the density of the datasets and 
contradicted our initial assumption that the number of 
required users would be correlated with the density of the 
dataset. Hence, we believe that further work is needed to 
evaluate the impact of the obfuscation polices with regard 
to other statistical properties of the dataset (e.g., average 
and standard deviation of the ratings). 

Threats to Validity 

Care should be taken in interpreting the experimental 
results and the conclusions thus drawn. In what follows we 
describe several possible threats to the validity of our 
results and analysis. The first threat lies in the fact that 
previous work that studied people’s privacy concerns dealt 
with broader forms of recommenders and different types of 
data.  For example, people were either concerned about the 
privacy of movie ratings or they were not. However, our 
current evolution focuses on obfuscating data within an 
individual type of data (movie recommendations). Thus, it 
is not clear that people may be content to have a proportion 
of their ratings for a single class shared (e.g., movies). 
Thus, future work should validate that these results are 
applicable to broader types of data. 

Secondly, our evaluation focuses mostly on generating 
recommendations for the average user, as we measure the 
error in the recommendations by using the MAE measure. 
However, although this is a very common measure in the 
CF recommender systems research domain, caution should 
be taken when interpreting the results which are based on 
this measure. This is because the data used for 
recommendations are usually of a "long tail" distribution 
(based on the power law distribution). Hence, most of the 
rated items are of interest to only a very small proportion of 
users (e.g., movies about 8th century Samurai fighting). 
However, due to the extreme size of the world there are still 
many users having such interests. Targeting 
recommendations for the average user will mostly not take 
into account the effect of losing some of these critical 
ratings. Hence, as there is obviously a real merit in 
considering such cases, they should be evaluated separately.  

A third threat lies in the fact that people might like to 
protect their ratings in a more selective way (e.g., only 

some of them, and only in a particular usage context). 
Therefore, it would be important to understand whether 
these particular users' concerns are met or alleviated by the 
obfuscation and aggregation methods explored in this work. 
These issues should presumably be analyzed with the aid of 
social user studies, which should provide an indication of 
how people feel about the different obfuscation strategies 
and how they would want to apply them. It would be 
beneficial to have a quantifiable metric of whether people 
can understand all the policies and which of them they 
believe would be most useful in terms of preserving their 
privacy (and how). In this context, it would also be highly 
beneficial to measure whether people would choose to 
release certain particular preferences and not others. For 
example, they might want to hide their ratings of violent 
movies but would be willing to release others. In addition, 
there is also the question of how much accuracy loss is 
tolerable, since it is important for interpreting our results. 

CONCLUSIONS AND FUTURE WORK  
The need to protect user privacy is triggering growing 
research efforts. Users are concerned about their privacy 
and refrain from using valuable Web applications to prevent 
an exposure. Privacy hazards for personalization systems 
are aggravated by the fact that effective personalization 
requires large amounts of personal data. Users looking for 
accurate personalized information, possibly of various 
kinds, may well need to interact with a different set of users 
and systems every time. This would ensure the collection of 
sufficient relevant data, thereby allowing an accurate 
recommendation to be provided. Distributed infrastructures 
can be used to facilitate the development of such 
personalized environments   

This work provides both new methodological and 
experimental contributions. We suggest using a notion of 
hierarchical topology, where the peers are organized in 
peer-groups managed by the super-peers. The super-peers 
encapsulate computations made by the underlying peers and 
then aggregate their results before sending them to the 
active user. Thus, an attacker cannot learn the properties of 
a single user, but rather only collect the aggregated 
preferences of a large group of users (managed by the given 
super-peer). We evaluated the approach of obfuscating user 
profiles using a number of publicly available datasets 
having different data characteristics. Our experimental 
results demonstrate that relatively large elements of the user 
profile could be obfuscated without hampering the accuracy 
of the generated CF recommendations. Thus, adding the 
proposed privacy enhancements does not severely affect the 
accuracy of the recommendations based on the CF 
algorithm.  

In this work, we investigated two tangential privacy-
enhancing techniques: obfuscation of the profiles and 
querying a subset of the available peers. Although currently 
we have not integrated both approaches, we see it as a 
natural extension for future work. We believe this may 



 

increase the overall privacy of the CF, while keeping the 
generated recommendations reasonably accurate. Another 
research direction that we plan to take in the future is 
studying the effect of various topologies in peer 
distribution. In this work, the peers were seeded randomly 
among the peer-groups. This does not reflect a real-life 
scenario, where the peers should be clustered to the peer-
groups according to various criteria, e.g., trust [10]. Using 
such a setting, where a query is sent only to a highly 
relevant subset of peer-groups, would not only optimize the 
communication overheads of the recommendation 
generation process, but would certainly reduce the privacy 
hazard and would probably increase user confidence in 
using such system.   
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