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ABSTRACT

Traditional mix-based systems are composed of a small set
of static, well known, and highly reliable mixes. To resist
traffic analysis attacks at a mix, cover traffic must be used,
which results in significant bandwidth overhead. End-to-end
traffic analysis attacks are even more difficult to counter be-
cause there are only a few entry- and exit-points in the sys-
tem. Static mix networks also suffer from scalability prob-
lems and in several countries, institutions operating a mix
could be targeted by legal attacks. In this paper, we intro-
duce MorphMix, a system for peer-to-peer based anonymous
Internet usage. Each MorphMix node is a mix and anyone
can easily join the system. We believe that MorphMix over-
comes or reduces several drawbacks of static mix networks.
In particular, we argue that our approach offers good pro-
tection from traffic analysis attacks without employing cover
traffic. But MorphMix also introduces new challenges. One
is that an adversary can easily operate several malicious
nodes in the system and try to break the anonymity of le-
gitimate users by getting full control over their anonymous
paths. To counter this attack, we have developed a collusion
detection mechanism, which allows to identify compromised
paths with high probability before they are being used.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—
Security and protection; C.2.4 [Computer-Communica-
tion Networks]: Distributed Systems—Distributed appli-
cations

General Terms

Algorithms, Design, Measurement, Security
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1. INTRODUCTION

In 1981, David Chaum proposed the concept of a miz net-
work [5], which is considered as the most promising approach
to solve the problem of anonymous communication in the In-
ternet. Since then several systems based on Chaum’s idea to
provide anonymous access to Internet services have been op-
erational. The mixmaster system [6] follows Chaum’s orig-
inal design closely and enables users to send and receive
(using reply blocks) electronic mail anonymously. Varia-
tions to the basic mix design to support near-real-time ser-
vices such as web browsing have led to circuit-based sys-
tems: Onion Routing [14], Freedom [4], Web Mixes [2], and
the Anonymity Network [17]. Most mix-based systems offer
sender and relationship anonymity [13]. Although there are
applications for receiver anonymity such as anonymous web
publishing [22], most Internet activities where anonymity is
desired require only sender and relationship anonymity.

Usually, mix networks consist of relatively few and well-
known mixes. To communicate anonymously with a server
in the case of a circuit based mix network, a user establishes
an anonymous path via a subset of the mixes. The mixes re-
lay all traffic exchanged between the user’s computer and the
server along this path. To be resistant against traffic anal-
ysis attacks, a mix network employs fixed-length messages
and layered encryption of messages. In addition, mixes de-
lay and reorder incoming messages from different users and
use cover traffic to hide real messages. Finally, each mix
processes each message only once to counter replay-attacks.

Traditional mix networks offer several benefits: the mixes’
identities (host names or IP addresses) can be made pub-
lic through web sites or the Usenet, which allows accessing
them easily. Digital certificates [12] allow to control which
mixes offer their services, which makes it difficult for unau-
thorized (and potentially malicious) mixes to join. In ad-
dition, by controlling who is allowed to operate a mix, one
can make sure that only highly reliable mixes with lots of
computing power and good network connectivity are present
in the system.

On the other hand, there are several limitations: the num-
ber of mixes is relatively small compared to the potential
number of users, which implies the system eventually reaches
its limits with respect to the traffic it can handle. Adding
more mixes extends its capacity, but the drastic imbalance
between mixes and system users poses a problem. In ad-
dition, traffic analysis attacks are difficult to counter, espe-
cially in systems that aim at providing low latency. Like
legitimate users, attackers can also easily learn about the
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Figure 1: Layers of encryption.

mixes the system consists of and try to break it by observ-
ing the traffic at some or all mixes. It is not clear today
if this attack can be effectively prevented without employ-
ing a constant stream of messages between two mixes. This
results in vast amounts of dummy traffic overhead, which
seems unacceptable in today’s Internet. End-to-end traffic
analysis is even more difficult to counter. To protect users
from this attack, a constant traffic flow must be established
between each user’s end-system and the first mix in their
anonymous paths. Considering the large number of users
one mix handles at the same time, a lot of bandwidth of
a mix is absorbed just by the dummy traffic sent to and
received from these end-systems. Finally, legal attacks are
another major threat. Several governments do not like the
idea of anonymity in the Internet. Law enforcement could
hinder institutions from operating a mix. Assume a univer-
sity operates a mix: the government just contacts the key
persons at that university and threatens to stop all current
and future funding of their research if the service offered
by the mix is not discontinued within one week. Because of
these limitations, we do not believe that mix networks based
on a relatively small set of static mixes are the best way to
achieve anonymity in the Internet.

In this paper, we introduce MorphMix, a peer-to-peer
based system to enable anonymous Internet usage. We do
no longer distinguish between users and mixes. Rather, each
user is also a mix at the same time — all participants are
equal peers. We believe a peer-to-peer environment elim-
inates or reduces the drawbacks of the traditional model.
However, we also introduce many new challenges. We do no
longer have a stable set of highly reliable mixes, but rather a
dynamic system of unreliable nodes that may join and leave
at any time. Some nodes have good network connectivity,
while others employ only slow dial-up connections. We also
do not rely on a global public key infrastructure (PKI) pro-
viding digital certificates because this will not be realized
in the near future and because we want each user be easily
able to run a node. This implies that it is not possible to
unambiguously authenticate other peers. Finally, allowing
anyone to participate makes it is easy for a malicious node
(and multiple colluding nodes) to join the system.

With MorphMix, we have several goals in mind: (1) join-
ing the system should be easy for anybody having access to
a computer with a public IP address that is connected to
the Internet. (2) The bandwidth overhead should be kept
low. In particular, we do not want to employ cover traffic.
(3) MorphMix should protect from an adversary operating
several malicious nodes to break the anonymity of legitimate
users. (4) The system should make successful traffic analysis
attacks very difficult. (5) MorphMix should be able to effi-
ciently cope with a large number of participating nodes. (6)
The end-to-end performance should be acceptable despite
the dynamic environment and unreliable nodes.

In the next section, we look at the basic design of Mor-
phMix. Section 3 describes how anonymous paths are estab-
lished while section 4 discusses how the size and dynamism
of the system help to protect from traffic analysis attacks.
In section 5, we show how to detect attacks from cooperat-
ing malicious nodes. Section 6 discusses related work and
section 7 concludes our work and gives an outlook.

2. BASIC ARCHITECTURE AND DESIGN

MorphMix consists of an open-ended set of nodes. A node
1 is identified by its IP address ip;. In addition, each node
has a key-pair consisting of a private key PrK; and a public
key PuK;. This key-pair is generated locally when a node
runs for the first time.

MorphMix is a circuit-based mix network. To access the
Internet anonymously, a user sets up an anonymous tunnel,
which starts at her own node, via some other nodes. We
name the node that is setting up the anonymous tunnel the
initiator. The last node of the tunnel is called the final
node and the nodes in-between are the intermediate nodes.
We also distinguish between well-behaving nodes, which are
nodes that do not try to break the anonymity of other users
and malicious nodes, which can collude with other malicious
nodes. We make use of layered encryption similar to the
approach proposed by Chaum [5]. Figure 1 depicts a fully
set up anonymous tunnel from n; via ns, n3, and ns.

All messages exchanged between two nodes have the same
length. We denote by {m}, the encryption of message m
with a key k. When n; sends a message m through the
anonymous tunnel, it encrypts it repeatedly with the sym-
metric keys corresponding to the nested encryptions (NEs),
which results in {{{m}ky s} knotky,- A header is pre-
pended, which contains an identifier that has local signif-
icance on each link between two nodes to route the mes-
sage along its tunnel. The header also contains a sequence
number to counter replay-attacks and a type to distinguish
control and data messages.

Before n; sends the message to n», the header is encrypted
according to the link encryption (LE) between n; and n» us-
ing the symmetric key kz,1. When ns receives the message,
it removes the link encryption using kz 1, removes one layer
of encryption using k1, determines the next hop according
to the identifier in the header, sets the fields in the header
for the next link, encrypts the header according to the link
encryption between n, and ns using kz,», and sends it to
ng. This continues until the final node is reached, which
relays the data to the server n; wants to communicate with.
Messages are sent back to n; in the same way but in oppo-
site order. This time, each node adds a layer of encryption
instead of removing one.

An important design decision is whether the mix network
operates on top of the IP layer or on the application layer.
In the first case, the system is transparent for end-to-end



transport and application protocols. Data is extracted at
the initiator after the IP-layer and transported hop-by-hop
through the mix network within UDP diagrams. The end-
to-end transport or application protocols are responsible to
provide a reliable data stream. In the second case, the user’s
application usually accesses the mix network in the same
way a web browser accesses a web proxy: a TCP-connection
is set up to an access program running on the initiator’s
computer, which in turn handles the communication with
the mix network. The data is sent within TCP-connections
on each link between two mixes. The system is no longer
transparent for the applications, and the access program
usually needs to understand the protocol of each application
it supports.

In traditional mix networks where each link between two
mixes carries the data of several users, UDP is the better
choice because with TCP, one lost packet between two mixes
stalls every user on that link. Similarly, when cover traffic
is used, it is virtually impossible to employ a constant traf-
fic flow between two mixes with TCP. Furthermore, UDP
makes sense in an environment where all mixes have similar
computing power and network connectivity. Each link be-
tween two mixes can be tuned to its maximum throughput
without having too many lost datagrams.

In MorphMix, the case is different. We do not employ
cover traffic and due to the large number of mixes, no link
is used by very many users at the same time. Furthermore,
given the heterogeneity of the nodes, using TCP makes life
much easier. With UDP, two nodes would have to employ
some sort of flow control between them in order not to lose
so many packets that the end-to-end performance would get
unacceptable. It is questionable if one could do much bet-
ter than using TCP directly. A mix network operating on
top of the IP-layer also requires that data can be extracted
from the protocol stack, i.e. from the kernel space. This is
usually not possible without special privileges. Conversely,
an application-level mix network operates completely in the
user space. We have therefore decided to implement Mor-
phMix as an application-level mix network using TCP be-
tween mixes. Although this means losing the transparency
of the system to transport and application protocols, we be-
lieve it serves the heterogeneity and dynamism of MorphMix
better.

3. ANONYMOUSTUNNEL SETUP
3.1 Selecting the Next Hop

In MorphMix, the initiator selects only the first interme-
diate node and each node along the anonymous tunnel then
picks the following node. This has one big advantage: each
node only needs to know about some other nodes. They
can communicate with each other and exchange control in-
formation to learn which of them have spare resources to
accept new anonymous tunnels. Conversely, assume the ini-
tiator would select all nodes of an anonymous tunnel. Ex-
cept for the first intermediate node, it has no idea about the
current status of the other nodes, e.g. if they are actually
willing to accept further anonymous tunnels. For such a sys-
tem to work efficiently, a lookup-service would be required.
The lookup-service could be queried to get nodes that are
currently willing to accept anonymous tunnels. There exist
scalable peer-to-peer lookup services such as Chord [20], but
the frequent joins and leaves of nodes and the continuously

changing state of each node would generate a lot of traffic
only to keep the information provided by the lookup-service
up-to-date. Letting each node select the next hop makes
MorphMix highly scalable because a node only has to man-
age its local environment. Independent of the system size,
a node only cares about a relatively small number of other
nodes at any time.

There is one problem with this approach: once we hit a
malicious node that wants to collect data about anonymous
tunnels, this node could either simulate all remaining hops
by itself or use an accomplice as the next hop. We will show
in section 3.3 how to solve this.

3.2 Local Environment and Peer Discovery

At any time, a node knows about some other nodes, i.e.
their IP addresses and public keys. We say that two nodes
are connected if they have currently established a link en-
cryption. The set of nodes a node a is connected to are a’s
neighbors. Two connected nodes exchange control informa-
tion, which tells them if the other peer is willing to accept
further anonymous tunnels. They can also check the quality
of the link by using ping-messages to find out if it actually
makes sense to use that link to set up anonymous tunnels.
So at any time, a node is connected to some other nodes and
knows which of them would currently accept being selected
as the next hop in an anonymous tunnel.

There are different ways to learn about other nodes: to
join, one must know at least one currently active node. This
can be done via a local cache where the node tries contact-
ing nodes that have been active previously, by querying some
nodes that are known to be always up, or by contacting some
information servers that know about “several” currently ac-
tive nodes. With several nodes, we mean that such a server
knows about a variety of nodes but it does not care about
what percentage of all nodes it actually knows. Each par-
ticipating node contacts some of these servers from time to
time and tells them about the nodes it currently knows and
gets some other active nodes in return. The servers quickly
forget nodes that haven’t been advertised in a while and al-
ways return a random set of nodes when being queried. This
guarantees that a node can learn about a variety of other
nodes in a short time.

It is important that different sources are contacted to
learn about other nodes. If a newly joining node contacts a
single node and that node happens to be part of a large set of
colluding malicious nodes, then the joining node would prob-
ably only learn from other nodes in that collusion, which
again would tell it about other nodes in the collusion and
so on. Learning about nodes via different sources should
significantly reduce this problem.

3.3 SettinguptheLink and Nested Encryption

When node a wants to set up the link encryption with
another node b, it first establishes a TCP-connection with
b. a then selects a random bit-string that serves as the
symmetric key for the link encryption. The key is encrypted
with b’s public key and sent to b.

Setting up a nested encryption takes place between the
initiator and a node along the anonymous tunnel. The goal
is to establish a symmetric key known only to the two end-
points of the nested encryption. Since the initiator does
not know the nodes and their public keys along its tunnel
beforehand (except the first intermediate node), we use the
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Figure 2: Setting up the nested encryption

Diffie-Hellman (DH) [9] key-exchange. If the initiator simply
sent its half of the DH key-exchange to node b responsible
for selecting the next hop ¢, b could easily play the role of
¢ (and other nodes following c) itself without the initiator
noticing this. To counter this attack, we must not allow b to
see the initiator’s half of the DH key-exchange in the clear.
To solve this problem, we introduce the notion of a witness.
For each hop, the initiator selects a witness randomly from
the nodes it currently knows. The witness’ task is to act as
a third party in the process of selecting the next hop of an
anonymous tunnel. Figure 2 illustrates the procedure to set
up the nested encryption.

Node a is the initiator. We assume the tunnel has already
been set up to node b (via zero or more intermediate nodes).
In addition, b has currently three connections established to
nodes ¢, d, and e that are willing to accept further anony-
mous tunnels. To set up the nested encryption to the next
node, the following steps are carried out:

1. a picks a witness w randomly from the set of nodes
it currently knows. It generates its half of a DH key-
exchange (DH,) and nonce; to prevent replay attacks.
nonce; and DH, are encrypted using w’s public key
PuK,,, resulting in {nonce:,DH,}puk, - a also speci-
fies s, which is the number of nodes b has to offer to w
in message 2. Here, we assume s = 3. a then sends a
message to b consisting of w’s IP address ipy, PuK,,
s, and the encrypted nonce and DH parameters. The
message tells b to append a node to the tunnel using
witness w.

2. breceives the message and sets up a link encryption to
w, using ip, and PuK,. It generates nonces, which
is used to recognize message 6. b generates a message
containing the encrypted nonce and DH parameters
from a, noncez, the IP addresses of 3 potential next
hop nodes (ipc, ip4, and ipe) and their public keys
(PuK,, PuKg4, and PuK,) and sends it to w. We name
the list of IP addresses offered by b the selection of b.

3. w receives the message and randomly picks one node
from the selection of b as the next hop. In figure 2, w
picks node ¢ and establishes a link encryption with ¢
using PuK.. w also decrypts nonce; and DH, using
its private key PrK,,, generates a message consisting
of nonces, ipy, and DH,, and sends it to c.

4. c gets the message and checks if it is indeed willing to
accept an anonymous tunnel from b. If yes, ¢ generates

an ok-message and sends it back to w.

5. w receives the ok-message and generates a receipt for a.
The receipt contains the IP addresses offered by b and
is signed by w using PrK,,. The first IP address in the
receipt is the one w has picked as the next hop. The
receipt also contains nonce; to guarantee its freshness
and is sent to b.

6. b receives the message from w and learns that w has
selected c as the next hop. It generates a message con-
taining nonce; and the identifier id to be used to iden-
tify data belonging to this anonymous tunnel on the
link between b and c¢. After having sent this message,
w’s task is completed and the connection between b
and w can be torn down again.

7. c gets the message and sends its part of the DH key-
exchange (DH.) back to b via a message identified with
id.

8. b generates a message consisting of DH. and the receipt
from w and sends it to a.

If anything fails, a nok-message is sent back to a and a
can either decide to tear down the tunnel completely or try
again. Note that the same procedure as above is used to
add the hop directly following the initiator. Of course, a
could simply pick that node by itself and directly establish
the nested encryption. However, this would tell the node
following a that a is the initiator of the anonymous tunnel.

Before analyzing the attacks, we identify the two main
features of the nested encryption setup. The first is making
sure that b does not learn a’s half of the DH key-exchange
as this would easily enable b to simulate all remaining hops
by itself. This is achieved by encrypting DH, for w and only
sending it in the clear from w to c. b never sees DH, in non-
encrypted form. The second is preventing b from selecting
the next hop purely by itself. This is achieved by having b
offering a selection of possible next hops to w and w selecting
one of them. This guarantees that b cannot predict which of
the nodes in the selection is going to be picked as the next
hop and makes it much more complicated for b to determine
the next hop. In particular, if b wants to make sure that ¢
is in the same set of colluding nodes as itself, then all nodes
in the selection of b must be in that collusion.

3.4 Analysisof the Nested Encryption Setup

We only briefly discuss the most important attacks. For
a more detailed analysis, refer to the technical report [16].



If b wants to simulate the next hop c, it can provide w in
message 2 with fake public keys it knows the private keys
of, intercept message 3 and act as c itself. To do so, b needs
active control over the link between w and c¢ to intercept
and inject data packets. However, b cannot predict which
witness a is going to choose, so b cannot prepare itself in
advance and it is difficult to intercept packets close to w.
It seems more realistic for b to intercept packets close to c,
especially as it is b that selects the list of nodes in message 2.
To make this attack as difficult as possible, we require that
all TP addresses offered by b in its selection and b’s own IP
address must not have similar IP prefixes. We will discuss
the number of IP addresses b has to offer ¢ in section 5.

If b and w are in the same set of colluding nodes, it is
trivial for b to simulate the next hop ¢ because w can pro-
vide DH,. Additionally, w can generate a receipt at will in
message 5. However, since a chooses randomly a different
witness for each hop, the probability that all witnesses are
cooperating with b is quite small if we assume that only a
relatively small portion of all nodes is malicious. As soon as
the witness for a link is not cooperating with b, it gets much
more difficult again for b to simulate the next hop.

If we assume b is part of a larger set of cooperating mali-
cious nodes, then b simply lists a subset of these malicious
nodes in message 2 and it is guaranteed that the next hop is
also part of the cooperating set. As we require that the IP
addresses must not have similar IP prefixes, the malicious
nodes must reside in different subnets, which complicates the
attack. Nevertheless, if an adversary manages to accumu-
late several nodes located in different areas of the Internet,
then this attack is quite easy to carry out.

We conclude that the most realistic attack is the one where
a set of cooperating malicious nodes tries to control as many
nodes along an anonymous tunnel as possible by offering
many or exclusively nodes from their collusion in their se-
lections. All other attacks require active control over several
network links and are therefore much harder to carry out. In
addition, if something like a world-wide PKI got deployed,
the use of digital certificates would defeat those attacks im-
personating another party would no longer be possible if ¢
signed message 7.

One final note regarding the selection of a witness to add
a hop to an anonymous tunnel. Since the witness knows
its neighbors, the initiator should select a witness from the
set of nodes it knows but never from those it is currently
connected to. This is also true when setting up the nested
encryption with the first intermediate node, where the ini-
tiator a contacts the witness directly: if the witness were
always chosen from the current neighbors, the witness could
conclude with high probability that a is indeed the initiator
of the anonymous tunnel.

4. TRAFFIC ANALYSISATTACKS

In this section, we look at how the large number of mixes
and the dynamism of MorphMix helps to protect from pas-
sive traffic analysis attacks.

If a global eavesdropper can observe every single Mor-
phMix node, we are doomed. Due to the limited mix func-
tionality of the nodes — in particular because we choose not
to employ cover traffic — such an adversary should be able
to break the anonymity of all MorphMix users by means
of timing attacks at the nodes along anonymous tunnels or
end-to-end timing attacks at the first and final nodes. The

question is if such an attacker is a reasonable assumption. As
mentioned in section 1, traditional, static mix networks are
composed of a small number of well-known mixes. This im-
plies that only a few Internet service providers (ISPs) have
to combine data to get a complete log of all data flowing
through the mix network. Although the community has
been arguing for years if the threat model with a global
eavesdropper is realistic, a lot of effort has been spent to
harden mix-based systems (forward-only and circuit based)
and to find attacks on them [1, 3, 7, 8, 11, 18, 19, 21, 23].
The conclusion is that — at least for circuit-based systems
— a high level of anonymity against a global observer can
probably not be achieved without employing vast amounts
of dummy traffic. Even that may not be enough to stop
a global active attacker capable of randomly blocking links
in the system. To successfully resist such an attacker, the
whole system needs to be stalled in case the data flow along
any link between two mixes stops, which probably renders
such a system not very useful in practice. Designing a sys-
tem that provides perfect anonymity against a global active
attacker while giving its user’s satisfactory end-to-end per-
formance for near-real-time applications is very difficult and
maybe not possible.

The difference in MorphMix is that because of the large
number of mixes, a global observer seems extremely unlikely.
The data of very many ISPs around the world have to be
combined to get the whole picture. In addition, due to the
large number of active nodes in the system, there exists a
huge number of potential paths a message can take as it
travels through the network. Nodes appear and disappear
and the whole system is dynamic and changes continuously,
which makes it virtually impossible for anyone to get knowl-
edge of the whole network at any time.

To take full advantage of the large number of nodes, it is
not enough for a node to discover some peers once it has be-
come active and to communicate with them for hours. The
reason is that this would greatly limit the possible previous
and next hops of anonymous tunnels through a node during
the time it is active. Rather, each node should constantly
try to learn about other peers that can be used as possi-
ble next hop nodes in anonymous tunnels and forget about
those it has been using for a while. As a result, each node
can potentially be connected to any other node at a time,
which implies that anonymous tunnels can follow any possi-
ble path through the network. Similarly, when acting as the
initiator of anonymous tunnels, a node does not establish
one tunnel and use it for a while, but keeps setting them
up in the background. The goal is to have some anony-
mous tunnels established at any time. Each tunnel is only
used for a relatively short time and several can be used in
parallel, if the application makes use of multiple end-to-end
connections at a time (think of communicating with a web
server and receiving the embedded objects within a page
through various TCP-connections). Changing anonymous
tunnels frequently is also beneficial for the collusion detec-
tion mechanism (see section 5), and having more than one
anonymous tunnel available at any time helps coping with
unreliable nodes or nodes that offer poor performance at
times: if the throughput of an anonymous tunnel is very
bad or it has stopped working completely because an inter-
mediate node has gone down, the tunnel is simply dropped
and another one is used.



Because of the size and dynamism of MorphMix, it is un-
likely an attacker can systematically observe a particular
user by monitoring all mixes along his anonymous tunnels.
Similarly, end-to-end traffic analysis attacks are difficult to
carry out, first of all because there are so many possible exits
for each anonymous tunnel and second because there are no
longer so easily identifiable entry-points (the link between
the user’s computer and the first mix) into the system as in
the traditional model. We also argue that using cover traffic
would not add much more to the resistance of MorphMix. In
particular, keeping up constant traffic flows between nodes
in a way that really protects from traffic analysis attacks
without significantly degrading the end-to-end performance
would be very difficult in a highly dynamic environment with
unreliable nodes.

We conclude that a limited eavesdropper that is able to
monitor several nodes but not a significant portion of the
system may occasionally break the anonymity of a user if
he manages to observe at least the traffic at the initiator
and final node of an anonymous tunnel. As soon as the
user switches to another tunnel, her identity is protected
again. This implies that MorphMix is well suited to protect
its users from long-term profiling without guaranteeing the
anonymity of every single transaction.

5. DETECTING COLLUSION ATTACKS

It is a hard problem to detect nodes that are just collecting
data but otherwise offer good service. However, there is one
key difference between an anonymous tunnel that was set up
via well-behaving nodes and one that is partly composed of
cooperating malicious nodes: in the first case, each node is
selected more or less randomly among all active nodes in the
system, while in the second case, nodes from the malicious
set appear with higher probability. Detecting nodes that ap-
pear more often together in anonymous tunnels than others
can only work when a user has set up and used a variety of
different anonymous tunnels, which is another argument to
support frequently changing the tunnels one is using.

In this paper, we describe the basic collusion detection
mechanism. It does not yet take prefixes of IP addresses into
account: two IP addresses are equal if they match in every
bit, otherwise they are completely different. The collusion
detection is based on the receipts a user gets from different
witnesses during the setup of anonymous tunnels (figure 2
messages 5 and 8). A receipt contains the possible next hops
offered to the witness (figure 2 message 2). The first node
in a receipt is the one selected by the witness, which implies
the initiator knows which node has offered which selection
for each intermediate node in an anonymous tunnel.

Each node maintains an internal table that contains a row
for each selection it has received during the setup of anony-
mous tunnels. Each row is a combination of a selection and
the node that offered the selection, which we name eztended
selection. If node b has offered the selection {ipc, ipg, ipe},
the resulting extended selection is {ips, ipc, ipq, ipe},

We now describe the computations a node performs to
determine if an anonymous tunnel is composed of collud-
ing nodes or not. For each new extended selection, a node
computes the correlation according to algorithm 1:

ALGORITHM 1. Computing the correlation of an extended
selection
1. Build a set ESny consisting of the nodes of the new

extended selection.

2. Define a result set ESr which is empty at first.

8. Compare each extended selection ESt in the internal
table with ESn. If ESx and ESt have at least one
element in common, add the elements of ESt to ESg.

4. Count each occurrence of elements in ESgr that appear
more than once and store the result in m.

5. Count the number of elements that appear only once
in ESr and store the result in u.

6. Compute the correlation ¢ which is defined as c = m/u
if u> 0, or oo otherwise.

We argue that the correlation is in general relatively big
if the new extended selection contains many or only collud-
ing nodes. Colluding nodes (1) select other colluding nodes
with high probability and (2) are selected by other colluding
nodes with high probability. This follows from our assump-
tion we stated in section 3.4 where we said that attacks by
a cooperating malicious set of nodes are most likely. Simi-
larly, well-behaving nodes (3) pick nodes for the selections
they offer from the set of all other nodes and (4) are picked
by all other well-behaving nodes. In step 3 of algorithm 1,
we want to find out what the nodes in the new extended
selection have done before, i.e. in what extended selections
they have appeared before and collect all extended selec-
tions in the internal table that contain elements of the new
extended selection in a set ESg. For reasons (1-4), we can
state the following properties about the set ESg:

1. If ESy mainly consists of colluding nodes, ESr will
contain relatively few different nodes and many occur-
rences of several colluding nodes. This implies a big
m and a small u, resulting in a big c.

2. If ESny mainly consists of well-behaving nodes, ESr
will contain relatively many different nodes with only
a few of them occurring several times. This implies a
small m and a big u, resulting in a small c.

Why do we not simply count how many times the elements
in ESy show up in the internal table? This would work if
we assumed that every node in the system was selected by
well-behaving nodes with the same probability. In this case,
colluding nodes would stand out since overall, they would be
selected more often than the well-behaving ones due to their
preference in the selections of colluding nodes. However, in
a real-world scenario, some nodes will be much more popular
than others because of their spare bandwidth and computing
power. Counting only the number of occurrences of nodes
in the internal table, one could wrongly suspect the very
popular nodes to build a colluding set, which would greatly
hurt the performance of the whole system. What distin-
guishes well-behaving popular nodes from colluding nodes
is that although the popular nodes appear frequently in se-
lections of well-behaving nodes, less popular nodes appear in
the same selections, too. Consequently, the variety of nodes
being selected by well-behaving nodes is always bigger than
the one selected by malicious nodes, even if there are some
very popular nodes. Similarly, it would not be sufficient to
look only at m instead of the ratio m/u. With several pop-
ular well-behaving nodes in an extended selection, m can
get quite big and the nodes in the extended selection could
again be suspected to build a colluding set. This is why
we take u into account: u tends to get relatively big com-
pared to m when the new extended selection contains mainly



well-behaving nodes — independently of the popularities of
the nodes, but is relatively small compared to m when the
extended selection consists of several malicious nodes.

5.1 Detecting Malicious Tunnels

We have argued that high correlations are an indication
for colluding nodes. However, we have not given a limit
above which extended selections get suspicious. The prob-
lem is that there is no such fixed limit. The correlations
depend on the number of nodes in the system, their popu-
larities, the number of nodes in a selection, and the size of
the internal table.

A node remembers the correlations it has computed over
time and represents them as a distribution function. It is
implemented as an array, whereas each slot of the array
corresponds to a particular discrete correlation. If a new
correlation ¢ is computed, it basically affects the slot closest
to ¢ by incrementing its value by 1. However, in order not
to let grow the values in the array indefinitely, they follow
an exponential weighted moving average (EWMA) with pa-
rameter a. « is slightly smaller than 1 and depends on the
number of extended selections in the internal table. After a
new correlation has been computed, the value in each slot
is multiplied with a, and (1 — «) is added to the slot that
corresponds to the new correlation.

We analyze how the correlation distribution looks. We as-
sume a system with 10’000 nodes, where some of them are
malicious and in the same colluding set. Each node is equally
popular. We set up 5’000 anonymous tunnels, whereas each
tunnel consists of 5 nodes in total. This means that the
initiator gets 3 different selections during the setup of each
tunnel, one from each of the intermediate nodes. Each selec-
tion contains 10 nodes, which is a reasonable selection size
in a system with 10’000 nodes (see section 5.3). For now,
we assume that malicious nodes offer only other malicious
nodes from their collusion in their selections, i.e. selections
from malicious nodes contain 10 malicious nodes. Figure 3
shows the correlation distribution when 5, 10, 20, or 30% of
all nodes are malicious.
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Figure 3: Correlation distribution with 10°000 nodes

We can see the contributions of well-behaving and mali-

cious nodes to the correlation distribution. In general, it
results in two peaks, one on the left from the well-behaving
nodes and one on the right from the malicious nodes. The
more malicious nodes there are in the system, the bigger the
right peak gets and the closer the two peaks move together.

The strategy a node follows when trying to detect mali-
cious anonymous tunnels is as follows: At any time, the node
knows the correlation distribution it has generated based on
selections it received previously. Based on this distribution,
the node determines a correlation limst. This limit should
have the property that if the correlation of a new extended
selection is smaller than this limit, then the node that of-
fered the corresponding selection is well-behaving with a
high probability. Similarly, the extended selection corre-
sponding to the selection of a malicious node should yield a
correlation that is above the limit with high probability. If
the correlations of all extended selections of an anonymous
tunnel are below that limit, then the anonymous tunnel is
considered good. Note that if only the final node in the tun-
nel is malicious, then this is difficult to detect because it
does not offer a selection. However, this final node cannot
learn anything about the anonymous tunnel by itself. On
the other hand, if the correlation of at least one extended se-
lection is above the limit, the tunnel is considered malicious
and will not be used. The difficulty of determining this limit
is that the node only knows the correlation distribution of
all nodes, i.e. the sum of the contributions of well-behaving
and malicious nodes in figure 3.

The steps the initiator carries out during the setup of
an anonymous tunnel to determine whether it is considered
good or malicious are listed in algorithm 2:

ALGORITHM 2. Determining if an anonymous tunnel is
good or malicious
1. Initialize a variable rejectTunnel to false.
2. Get the next extended selection ESn of the anonymous
tunnel.
3. Compute the correlation ¢ of ESn.
4. Determine the limit correlation c; from the correlation
distribution.
. If ¢ is greater than c;, set rejectTunnel to true.
6. Add c to the correlation distribution and add ESn to
the internal table.
7. If there are more intermediate nodes following in the
tunnel, go to step 2.
8. If rejectTunnel is true, reject the tunnel. Otherwise
it s considered good.

(S

We now analyze how well our algorithm performs. There
are two figures we are evaluating: false positives, i.e. the
number of good anonymous tunnels that were wrongly clas-
sified as malicious, and the false negatives, which are those
anonymous tunnels that have been classified as good but
actually contain more than one malicious node. According
to our assumption that malicious nodes present only other
malicious nodes in their selections, it is guaranteed that the
m malicious nodes in a tunnel are always the last m hops
of that tunnel. A tunnel consisting of n nodes may con-
tain 1...(n — 1) malicious nodes. Tunnels where only the
final node is malicious cannot be detected but do not pose a
problem, as mentioned above. Consequently, we try to de-
tect tunnels consisting of 2...(n — 1) colluding nodes. We
therefore split the false negatives further depending on the
number of malicious nodes anonymous tunnels contain. If a



tunnel contains 5 nodes, then there are false negatives with
2, 3, or 4 malicious nodes.

Figure 4 shows the false positives and negatives for the
setting in figure 3. The graphs show the cumulated per-
centages of false positives and negatives after n anonymous
tunnels have been set up. For instance, in figure 3a, the
line with the false positives shows about 20% false positives
after 2’000 anonymous tunnels. This means that 20% of
all good anonymous tunnels were wrongly classified as mali-
cious during the setup of the first 2’000 anonymous tunnels.
The table lists the absolute figures of false positives and
negatives after all 5’000 anonymous tunnels have been set

up.
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Figure 4: False negatives and positives with 10’000
nodes

We see that false negatives mainly occur when only a few
tunnels have been set up. The reason is that in the begin-
ning, it is difficult to determine if a new extended selection
is good or malicious because the internal table of the initia-
tor does not yet contain enough extended selections. After
this initial phase, however, only very few malicious tunnels
remained undetected. False positives happen from time to
time, which is caused by the fact that the correlation limit
is always chosen to minimize the false negatives at the cost
of a few false positives. We can also see that with more
malicious nodes, it takes longer until we can detect false
negatives with high probability, which makes sense because
more anonymous tunnels are needed to learn enough about
the adversary. This is confirmed by looking at the number of
completely compromised tunnels (those consisting of 4 mali-

cious nodes) in the table in figure 4: with 5 or 10% malicious
nodes, we missed none of them, with 20% we missed 4, and
with 30% malicious nodes we missed 11 fully compromised
tunnels until the initiator had collected enough information.

The collusion detection mechanism has its limit. If the
amount of malicious nodes is increased to 50% and beyond,
detecting malicious tunnels is no longer possible because the
two peaks in the correlation distribution merge into one.
Nevertheless, we conclude our mechanism to detect mali-
cious tunnels basically works very well. Of course, there
is a learning phase, but once the initiator has accumulated
enough information, virtually all malicious tunnels are de-
tected. However, it should be noted that our measurements
are based on the assumption that well-behaving and mali-
cious nodes are equally popular and that malicious nodes
offer only other malicious nodes from the same collusion in
their selections. We will examine different adversarial games
in section 5.2.

The fact that it takes setting up some anonymous tunnels
until a node can make reasonable judgments about whether
a tunnel is good or malicious has some implications. First
of all, to not lose the knowledge about previously estab-
lished tunnels in case a node has been inactive for a while,
its full internal table is periodically stored on disk. But be-
sides that, MorphMix provides incentive for a user to keep
her node active even when she does not need to access the
Internet anonymously: the node continues to set up anony-
mous tunnels to collect information about the system, which
increases the user’s protection from collusion attacks, and at
the same time this adds to the system’s size and dynamism
to increase its resistance to traffic analysis attacks.

5.2 A MoreClever Adversary

We have seen in the previous section that life gets diffi-
cult for the adversary if the nodes he controls offer other
malicious nodes from the same collusion too aggressively.
A different adversarial game is to offer not only malicious
nodes but also well-behaving nodes in their selections. Ac-
cording to algorithm 1, this should bring the peaks result-
ing from the selections of well-behaving and malicious nodes
closer together and make it more difficult for the initiator
to detect compromised tunnels.

We use the same basic setting as in section 5.1 and vary
the number of malicious nodes in selections of malicious
nodes from 0...10. In contrast to section 5.1, it is now
no longer the case that all remaining nodes of a tunnel are
malicious once a malicious node has been hit because a wit-
ness can choose a well-behaving node from the selection of
a malicious node. Consequently, it is now possible that the
adversary controls the first intermediate and the final node
of an anonymous tunnel, but not necessarily all others in-
between. As we do not employ cover traffic, it could be the
case that an advanced adversary makes use of timing attacks
to learn these two nodes belong to the same tunnel, which
means he would have fully compromised the tunnel. We
therefore look more closely at two cases: (1) the adversary
controls all nodes following the initiator along an anony-
mous tunnel and (2) the adversary controls at least the first
intermediate and the final node. Figure 5 shows the per-
centage of all anonymous tunnels the adversary is expected
to compromise according to the two cases described above.

We see that the adversary’s chances to fully compromise
anonymous tunnels increases compared to figure 4. For in-
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Figure 5: Expected percentage of compromised tun-
nels with a less aggressive adversary

stance, figure 5a shows that an adversary controlling 1’000
nodes is likely to fully compromise nearly 1% of the anony-
mous tunnels if the nodes he controls offer 5 malicious nodes
in their selections. However, this is still significantly better
than the expected 10% fully compromised tunnels without
using the collusion detection mechanism. Figure 5a also
shows that if the number of nodes in the collusion increases,
then malicious nodes can offer more malicious nodes in their
selections without being detected by the initiator. Control-
ling 3’000 nodes and offering 8 malicious nodes in the selec-
tions allows the adversary to fully compromise nearly 9% of
all tunnels. Without employing a collusion detection mech-
anism, his probability of success would be 30%. Note that
it is possible to further reduce the percentages in figure ba
by using more intermediate nodes in an anonymous tunnel,
but at the price of an increased end-to-end delay. For in-
stance, using 7 instead of 5 nodes reduces the maximum
expected percentage of fully compromised tunnels to about
0.15% with 1’000 and below 1% with 2’000 malicious nodes.

Figure 5b shows that an adversary controlling 1’000 nodes
can expect to control the first intermediate and final node
in 1.7% of all anonymous tunnels if malicious nodes offer
5 other malicious nodes in their selections. This is slightly
above the 1% he would control if he played fair, i.e. if he
offered well-behaving and malicious nodes in the same way
as well-behaving nodes did. With 3’000 malicious nodes,
this goes up to about 13% compared to 9% if the malicious
nodes played fair. Using more nodes in an anonymous tunnel
again brings down the percentages.

Although the adversary is able to fully compromise a few
anonymous tunnels using the less aggressive strategy dis-
cussed above (either trivially by controlling all nodes follow-
ing the initiator or by controlling at least the first intermedi-
ate and the final node and making use of timing attacks), his
abilities are still very limited. First of all, he does not know
if the first node he controls is really the first intermediate
node, which implies he cannot know for sure who the initia-
tor is. Second, although he can expect to compromise some
anonymous tunnels, he cannot mount a targeted attack on
a node to compromise all its tunnels where he controls the
first intermediate node during the next hour or so. He can
continuously try, but only occasionally he will manage to
control enough nodes along a tunnel to fully compromise it
without being detected by the initiator.

Another strategy of the adversary could be to make sure
the nodes he controls are not very popular. This could be
achieved by telling their neighbors that they are not willing
to accept further anonymous tunnels. The main idea behind

this strategy is to have only a few extended selections from
malicious nodes in the internal tables of the initiators to
keep their correlations small, which should bring the peaks
resulting from the selections of well-behaving and malicious
nodes closer together.

Figure 6 shows the adversary’s expected percentage of
compromised tunnels if he varies the relative popularities
of the malicious nodes from 0.05...1.0 of the well-behaving
nodes.
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Figure 6: Expected percentage of compromised tun-
nels with less popular malicious nodes

Here again, the adversary’s changes increase compared
to figure 4. When controlling 1’000 nodes, he manages to
compromise nearly 1% of all tunnels when keeping the ma-
licious nodes’ relative popularities at 10-15%. With 3’000
malicious nodes, it increases to 7% when keeping the mali-
cious nodes’ relative popularity at 20%. It is again possible
to further reduce the percentages in figure 6 by using more
intermediate nodes in an anonymous tunnel, but at the price
of an increased end-to-end delay. Using 7 instead of 5 nodes
reduces the maximum expected percentage of fully compro-
mised tunnels to about 0.3% with 1’000 and 0.55% with
2’000 malicious nodes. We conclude the collusion detec-
tion mechanism still works well also against this adversarial
game. In particular, an adversary controlling not more than
about 10-20% of all nodes will not be able to fully compro-
mise more than very few anonymous tunnels.

In general, the adversary remains undetected as long as
he makes sure the density of extended selections contain-
ing many malicious nodes does not grow beyond a certain
threshold an initiator’s internal table. This means he can
send some malicious external selections to an initiator dur-
ing the setup of anonymous tunnels until this threshold is
reached without attracting attention. Extended selections
do not remain in the internal table forever (see section 5.3),
so once the threshold is reached, the adversary has to wait
until the initiator has forgotten about some of these mali-
cious extended selections before he can successfully attack
again. If we assume a user has a “clean” internal table in the
sense that it does not contain malicious extended selections,
the adversary can either attack her aggressively for a short
time to compromise relatively many tunnels and then wait
a long time until the initiator has forgotten the malicious
extensions, or he can choose to “spend his credit” over a
longer time to occasionally break an anonymous tunnel.

Note we have deliberately not included the percentages
of false positives in figures 5 and 6. For the sake of com-
pleteness, there are always about 10% false positives. Ad-
ditionally, it is always possible to further reduce the rate
of false negatives by determining the correlation limit more
conservatively, but at the cost of more false positives.



We conclude that MorphMix is well suited to protect its
users from long-term profiling attacks carried out by an ad-
versary controlling a limited number of nodes. This result
is very similar to our discussion about the possibilities of a
limited eavesdropper (see section 4).

5.3 Scalability

We have analyzed the influence of several parameters in
our system on its behavior and performance [16] and briefly
summarize the most important results.

Most parameters depend of the number of nodes in the
system. A node remembers all other nodes it has seen as
part of selections in a least recently seen nodes list. Each
entry also contains a timestamp that specifies when the node
has been seen for the last time. Nodes that have not shown
up for a while are removed from the list. Upon joining the
system for the first time, a node has no idea how many other
nodes there are and only learns about this after having set
up several anonymous tunnels. However, observing how fast
the correlation distribution starts getting its typical shape
allows the initiator to guess the number of nodes in the
system.

The first parameter we look at in more detail is the size
of the selection. In general, larger selections yield better
separations of the two peaks in the correlation distribution.
However, very large selections require each node to be con-
nected to very many other nodes at one time. We have car-
ried out several measurements and derived a formula that
provides a good compromise. If n is the number of differ-
ent nodes in the system, then the selection size s should be
chosen as s = max([5-log;, n— 101, 1) [16]. This means the
selection size grows logarithmically with the system size. As
an example, with 10’000 nodes in the system, s should be
set to 10, as we have done in the examples in sections 5.1
and 5.2.

Another issue is the size of the internal table. The com-
plexity to compute the correlation of a new extended selec-
tion is proportional to the number of extended selections in
the internal table. We should therefore try to keep its size
as small as possible to minimize the overhead. The idea
is to “forget” old extended selections and to keep only the
k least recently received extended selections in the internal
table. This is not only reasonable to keep the complexity
low, but also makes sense because new extended selections
give the most accurate picture of the current situation of
the system. Like above, we have derived a formula that pro-
vides good results. If 5 is the average number of elements
in a selection and n the number of nodes in the system, the
number of extended selections k in the internal table should
be k = 2 - n/3 [16], which means the internal table grows
linearly with the size of the system. Following the example
above with 10’000 nodes and a selection size of 10, k& would
be 2’000.

This linear dependency of the complexity to process a new
extended selection poses a problem if the system gets very
large. We have performed our measurements on a system
with a 1 GHz AMD Athlon CPU and 256 MB RAM, running
Linux with a 2.4.17 kernel. The software is written in Java
and we use Sun’s Java 2 SDK 1.4. With n nodes in the
system, it takes about n/2'500 ms to completely process a
new extended selection. With 100’000 nodes, this results in
40 ms, which is acceptable, but with 1°000’000 nodes, this
grows to 400 ms, which is no longer insignificant.

5.4 A Realistic Scenario

We look at a what we believe is a realistic scenario. There
are 100’000 nodes in the system. The popularities of the
well-behaving nodes follow a negative exponential distribu-
tion where the most popular nodes are 50 times as popular
as the least popular ones. We also take into account that
nodes enter and leave the system, so at any time not all
of the well-behaving nodes are active. In general, we can
assume that the popularity and availability of a node are
not independent because nodes that are available most of
the time often have better network connectivity than those
with slow dial-up connections that are online for only an
hour or so every day. Nevertheless, it may also happen that
some popular nodes are only available every now and then
and that some unpopular nodes are nearly always active. We
model this by assigning each node an availability between 0
and 1. Popular nodes have generally a higher availability,
but there are exceptions. We choose an average availability
of 0.25 for the well-behaving nodes, which implies there are
about 25% of them active at any time.

To be most effective, the adversary makes sure that as
many of the nodes he controls are active. We model this
by assigning each malicious node an availability of 0.8. In
addition, we use another result from our experiments [16]:
the adversary’s chances to compromise anonymous tunnels
without being detected increase if he manages to keep the
popularities of the nodes he controls more or less equal.
Therefore, we model the popularities of the malicious nodes
also with a negative exponential distribution, but here the
most popular nodes are only 5 times as popular as the least
popular ones. We also take malicious witnesses into account:
if it happens that the witness and the node setting up the
next hop are in the same collusion, then the witness gener-
ates a fake selection that does not contain any node from
the collusion to confuse the initiator.

The initiator sets up 20’000 tunnels. After every 100
anonymous tunnels, the set of active nodes is determined
according to their availabilities: a node with availability 0.5
has a 50% probability of being active during the time the
next 100 anonymous tunnels are set up. The adversary con-
trols 2’500 nodes. We carry out the same measurements as
in section 5.2. Figure 7 depicts the results.
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Figure 7: A realistic scenario

We see that the mechanism to detect malicious tunnels
copes very well with this dynamic scenario. The results
are comparable with the measurements with 10% malicious
nodes in figures 5 and 6. This is not surprising because in
the dynamic scenario evaluated in figure 7, approximately
25% of the well-behaving nodes and 80% of the malicious
nodes are active at any time, which means there are also



about 10% malicious nodes among the active nodes at any
time. The percentage of false positives is again about 10%.

6. RELATED WORK

In section 1, we have already mentioned some systems fol-
lowing Chaum'’s traditional approach. Here we have a look
at two systems based on peer-to-peer technology, Crowds
and Tarzan.

Crowds [15] collects users in a group (the “crowd”) to
browse the Web anonymously. To join, a user contacts a
central server and learns about the other members. A user
that wants to request a web page forwards the request ran-
domly to another member in the crowd. When a crowd
member receives a request from another member, it makes
a random choice to either forward the request to another
crowd member or submit it to the server the request is in-
tended for. The reply from the server uses the same path
back. To the outside, the system provides anonymity in the
sense that any crowd member could have requested the web
page. Crowds does not make use of layered encryption but
uses a shared key that is known to all members in a crowd to
link-encrypt the messages. Crowds is similar to our system
in the sense that it also implements a “every node is a mix”
policy, but does not employ a collusion detection mechanism
to protect from collaborating members.

Tarzan [11] is a recent effort to provide a peer-to-peer
anonymizing network layer. Tarzan provides anonymous
best-effort IP service and is transparent to applications. The
system makes use of layered encryption, fixed-length mes-
sages, and cover traffic to guarantee high protection against
traffic analysis attacks. The cover traffic mechanism is espe-
cially worth mentioning: each node maintains a bidirectional
packet stream with a fixed number of other nodes (its mim-
ics). Anonymous tunnels through a node are only relayed
via the node’s mimics, which implies that real data are al-
ways hidden in the packet streams between the node and
its mimics. While this approach limits the possible paths
that can be selected for a tunnel, it has the advantage that
cover traffic is exchanged only between a few of all poten-
tial pairs of nodes. In general, Tarzan has strong anonymity
properties. To achieve them, a node cannot simply select
its mimics as it likes. Rather, they are selected in a pseudo-
random, but universally verifiable way from the pool of all
present nodes. Consequently, the probability that a mali-
cious node has only other malicious nodes as its mimics is
very small, which implies it is difficult for an adversary to
control all nodes in a tunnel. To select the own and ver-
ify another node’s mimics, a node needs to know about all
nodes in the system. Additionally, a node validates each
other node upon learning from its presence by contacting
it. It is reasonable to assume that Tarzan works quite well
even with very many nodes in the system if the participat-
ing nodes do not change too frequently. On the other hand,
especially the requirement to know about all other nodes
leaves open the question how well Tarzan can cope with a
dynamic environment where nodes come and go.

Although not directly comparable with our work, there
has been another proposal to use witnesses in mix networks
[10]. In contrast to our system where witnesses are used to
select the next hop randomly, their witnesses are used to
discover bad nodes that fail to forward messages to increase
the reliability of a mix network.

7. CONCLUSIONSAND FUTURE WORK

We have presented MorphMix, a system that enables peer-
to-peer based anonymous Internet usage. Recalling the goals
we stated in section 1, we argue that we have achieved them.
Joining the system is easy because all a node needs is learn-
ing about some other active nodes in the system. The band-
width overhead is reasonably low, in particular because we
do not employ cover traffic. Acceptable end-to-end perfor-
mance is achieved by quickly switching to another tunnel
when one offers very poor performance or has stopped work-
ing completely.

Based on the assumption that it is extremely unlikely that
an adversary is able to monitor the whole system, we have
argued that it is only possible for him to occasionally break
the anonymity of a user if he manages to observe at least
the traffic at the initiator and final node of an anonymous
tunnel. As soon as the user switches to another tunnel, her
identity is protected again. We have also shown that Mor-
phMix is reasonably resistant to collusion attacks as long as
the adversary does not control significantly more than about
20-30% of all participating nodes. Here again, the adver-
sary may fully compromise a few anonymous tunnels, but
in most cases, he will fail. Consequently, MorphMix is well
suited to protect its users from long-term profiling without
guaranteeing the anonymity of every single transaction.

Each node has only to handle its local environment con-
sisting of the peers it is connected to, which is virtually inde-
pendent of the number of active nodes. Scalability is mainly
an issue when determining whether an anonymous tunnel is
good or bad. As the time to process a newly arriving se-
lection increases linearly with the system size, MorphMix
eventually reaches its limits when the number of nodes ap-
proaches 1°000°000.

Compared with static mix networks, MorphMix scales
better and is much less vulnerable to legal attacks due to
its decentralized nature. The most significant difference is
that because of its size and dynamism, MorphMix does not
need to employ cover traffic to reasonably protect from traf-
fic analysis attacks, which results in much less overhead.

Our collusion detection mechanism is based on each user’s
own experience she has collected during the setup of her
anonymous tunnels. This is not a problem if the number
of participating nodes in the system is relatively small. Ac-
cording to figure 4, it takes about 100 anonymous tunnels of
length 5 until reasonable judgments about whether a tun-
nel is good or malicious can be made, which is an acceptable
burden. But with 100’000 nodes, this increases to about 750
and with 1°000°000 nodes to about 8’000 tunnels [16], which
is no longer insignificant. Upon joining the system for the
first time, the user could either not use anonymous tunnels
until she has acquired enough knowledge or always accept
tunnels in the beginning and risk frequent observation by a
possible adversary. One could also imagine to use the expe-
rience of many or all users together that share their extended
selections to learn about the system much more quickly. But
carelessly giving away the information about extended selec-
tion collected during the setup of the own anonymous tun-
nels could allow others to learn more about these tunnels.
In addition, malicious nodes could distribute fake extended
selection to confuse well-behaving users. To solve this, one
could define a set of trusted witnesses [10] to improve the
trust in extended selections received from other nodes.



MorphMix is still very much work in progress and has
some limitations in its current state. As anonymous tunnels
can fail at any time, the system is best suited for appli-
cations making use of several short-lived end-to-end con-
nections such as web browsing. Maintaining longstanding
remote login sessions is a problem without being able to
reroute anonymous tunnels when a node fails or without
making sure that an anonymous tunnel contains only nodes
that remain active with high probability. We also do not
yet take prefixes of IP addresses into account because up to
now, two IP addresses were either the same or completely
different, independent of the number of bits their prefixes
match. Taking IP prefixes into account should prevent an
attacker from simply operating 1’000 nodes in only a few dif-
ferent subnets or from regularly changing the IP address of
a node within its subnet to give it a new identity from time
to time. We also have to study peer discovery in more detail
to avoid a node mainly learns about malicious nodes form-
ing a collusion, how denial of service attacks can affect the
system, and if there are adversarial games that significantly
increase the probability to break anonymous tunnels.

Our next steps are to solve these problems to increase the
robustness and resistance to attacks, finalize the design of
the protocol, and completely implement the system.
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